Low-Tech Process-Based Restoration of Riverscapes Design Manual

by ; ; ; ;
Format: Paperback
Pub. Date: 2019-06-29
Publisher(s): Usu Restoration Consortium
  • Free Shipping Icon

    Free Shipping On Orders Over $35

    Your order must be $35 or more to qualify for free economy shipping. Marketplace items, eBooks and apparel do not qualify towards the $35 purchase minimum.

List Price: $64.00

Buy New

Usually Ships in 8 - 10 Business Days.
$63.94

Rent Textbook

Select for Price
There was a problem. Please try again later.

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Stream and riverine landscapes or riverscapes are made up of a series of interconnected floodplain, groundwater, channel habitats, and their associated biotic communities that are maintained by physical and biological processes that vary across spatial and temporal scales. An over-arching goal of riverscape restoration and conservation is to improve the health of as many miles as possible, while ensuring those systems achieve and maintain their potential in self-sustaining ways. This design manual is intended to help the restoration community more efficiently maximize efforts to initiate self-sustaining recovery of degraded riverscapes at meaningful scales. Structural-starvation of wood and beaver dams in riverscapes is one of the most common impairments affecting riverscape health. At a basic level, a riverscape starved of structure drains too quickly and efficiently, lacks connectivity with its floodplain and has simpler more homogenous habitat. By contrast, a riverscape system with an appropriate amount of structure provides obstructions to flow. What follows in the wake of structurally-forced hydraulic diversity are more complicated geomorphic processes that result in far more diverse habitat, resilience, and a rich suite of associated ecosystem services. The purpose of this design manual is to provide restoration practitioners with guidelines for implementing a subset of low-tech tools—namely post-assisted log structures (PALS) and beaver dam analogues (BDAs)—for initiating process-based restoration in structurally-starved riverscapes. While the concept of process-based restoration in riverscapes has been advocated for at least two decades, details and specific examples on how to implement it remain sparse. Here, we describe 'low-tech process-based restoration' as a practice of using simple, low unit-cost, structural additions (e.g., wood and beaver dams) to riverscapes to mimic functions and initiate specific processes. Hallmarks of this approach include:• An explicit focus on the processes that a low-tech restoration intervention is meant to promote• A conscious effort to use cost-effective, low-tech treatments (e.g., hand-built, natural materials, non-engineered, short-term design life-spans) • 'Letting the system do the work', which defers critical decision making to riverscapes and nature's ecosystem engineersImportantly, the manual conveys underlying principles guiding use of low-tech tools in process-based restoration in systems impaired by insufficient structural complexity. Although intended to be simple, low-tech restoration still requires some basic understanding of watershed context, riverscape behavior and channel evolution, and careful planning. The manual provides interested practitioners with sufficient conceptual and applied information on planning, design, permitting, construction and adaptive management to get started, as well as references to additional information and resources. Detailed design and construction guidance is provided on two effective low-tech tools: 1) beaver dam analogues (BDAs) for mimicking beaver dam activity, and 2) post-assisted log structures (PALS) for mimicking wood accumulation in riverscapes. Throughout the manual, readers are reminded that the structures themselves are not the solution, but rather a means to initiate specific, desirable processes. Ultimately, embracing the design principles will help practitioners better understand the 'why' behind structural interventions and allow for more efficient and effective riverscape restoration.

Author Biography

Scott Shahverdian is a fluvial geomorphologist with USU's Ecogeomorphology & Topographic Analysis Lab and has worked in Washington, Idaho, and Utah on watershed assessments and managed a wide range of stream restoration projects. He has a background evaluating the effects of wildfire on low-order streams, using low-tech methods to restore wadeable streams, GIS analysis, and field surveys. He combines remote sensing and field survey data to perform assessments that range from the reach scale to the watershed scale and works with diverse stakeholders, including public land managers, and private land owners to implement and assess stream restoration projects. Scott has a M.S. in Geosciences from Colorado State University.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.